所属栏目:工业通用技术及设备
【日期】:2024-09-15 【关键词】:故障诊断;液压系统;自注意力;图神经网络 【摘要】:针对特种车辆支腿液压系统故障信号的复杂性、特征混叠等问题,提出一种基于自注意力池化图神经网络的车辆支腿液压系统故障诊断方法,并介绍了车辆支腿的常见故障模式和失效机理。将故障信号转换为2D特征图表示,并提出一种改进的3D结构的特征图。以故障特征图作为输入,将图卷积与自注意池化相结合进行特征提取,通过全连接层对提取的特征进行分类识别。结果表明:与2D特征图相比,所提3D特征图提高了...